Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe
نویسندگان
چکیده
The broad-based implementation of thermoelectric materials in converting heat to electricity hinges on the achievement of high conversion efficiency. Here we demonstrate a thermoelectric figure of merit ZT of 2.5 at 923 K by the cumulative integration of several performance-enhancing concepts in a single material system. Using non-equilibrium processing we show that hole-doped samples of PbTe can be heavily alloyed with SrTe well beyond its thermodynamic solubility limit of <1 mol%. The much higher levels of Sr alloyed into the PbTe matrix widen the bandgap and create convergence of the two valence bands of PbTe, greatly boosting the power factors with maximal values over 30 μW cm(-1) K(-2). Exceeding the 5 mol% solubility limit leads to endotaxial SrTe nanostructures which produce extremely low lattice thermal conductivity of 0.5 W m(-1) K(-1) but preserve high hole mobilities because of the matrix/precipitate valence band alignment. The best composition is hole-doped PbTe-8%SrTe.
منابع مشابه
Synthesis and thermoelectric properties of compositional-modulated lead telluride-bismuth telluride nanowire heterostructures.
We demonstrate the rational solution-phase synthesis of compositional modulated telluride nanowire heterostructures containing lead telluride (PbTe) and bismuth telluride (Bi2Te3). By tuning the ratio between PbTe and Bi2Te3 through adjusting the amount of critical reactants and precursors during the synthesis, the influence of composition on the thermoelectric properties of the nanowire hetero...
متن کاملC1ee01928g 3640..3645
The complexity of the valence band structure in p-type PbTe has been shown to enable a significant enhancement of the average thermoelectric figure of merit (zT) when heavily doped with Na. It has also been shown that when PbTe is nanostructured with large nanometer sized Ag2Te precipitates there is an enhancement of zT due to phonon scattering at the interfaces. The enhancement in zT resulting...
متن کاملSize- effect induced high thermoelectric figure of merit in PbSe and PbTe nanowires.
The fundamental properties that compose the thermoelectric figure of merit are investigated in the confined systems of PbSe and PbTe nanowires, with the goal to improve the thermoelectric efficiency. Using the Landauer electronic transport theory, we verify that the figure of merit can be several times larger than the bulk value for nanowires with diameters down to the one nanometer scale. This...
متن کاملWeak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe.
PbSe is a surprisingly good thermoelectric material due, in part, to its low thermal conductivity that had been overestimated in earlier measurements. The thermoelectric figure of merit, zT, can exceed 1 at high temperatures in both p-type and n-type PbSe, similar to that found in PbTe. While the p-type lead chalcogenides (PbSe and PbTe) benefit from the high valley degeneracy (12 or more at hi...
متن کاملStructure and thermoelectric properties of spark plasma sintered ultrathin PbTe nanowires.
Solution-synthesized thermoelectric nanostructured materials have the potential to have lower cost and higher performance than materials synthesized by solid-state methods. Herein we present the synthesis of ultrathin PbTe nanowires, which are compressed by spark plasma sintering at various temperatures in the range of 405-500 °C. The resulting discs possess grains with sizes of 5-30 μm as well...
متن کامل